mysql分页limit 优化
mysql的分页比较简单,只需要limit offset,length就可以获取数据了,但是当offset和length比较大的时候,mysql明显性能下降
1.子查询优化法
先找出第一条数据,然后大于等于这条数据的id就是要获取的数据
缺点:数据必须是连续的,可以说不能有where条件,where条件会筛选数据,导致数据失去连续性
[codes=sql]mysql> set profiling=1;
Query OK, 0 rows affected (0.00 sec)
mysql> select count(*) from Member;
+----------+
| count(*) |
+----------+
| 169566 |
+----------+
1 row in set (0.00 sec)
mysql> pager grep !~-
PAGER set to 'grep !~-'
mysql> select * from Member limit 10, 100;
100 rows in set (0.00 sec)
mysql> select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100;
100 rows in set (0.00 sec)
mysql> select * from Member limit 1000, 100;
100 rows in set (0.01 sec)
mysql> select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100;
100 rows in set (0.00 sec)
mysql> select * from Member limit 100000, 100;
100 rows in set (0.10 sec)
mysql> select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100;
100 rows in set (0.02 sec)
mysql> nopager
PAGER set to stdout
mysql> show profiles\G
*************************** 1. row ***************************
Query_ID: 1
Duration: 0.00003300
Query: select count(*) from Member
*************************** 2. row ***************************
Query_ID: 2
Duration: 0.00167000
Query: select * from Member limit 10, 100
*************************** 3. row ***************************
Query_ID: 3
Duration: 0.00112400
Query: select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100
*************************** 4. row ***************************
Query_ID: 4
Duration: 0.00263200
Query: select * from Member limit 1000, 100
*************************** 5. row ***************************
Query_ID: 5
Duration: 0.00134000
Query: select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100
*************************** 6. row ***************************
Query_ID: 6
Duration: 0.09956700
Query: select * from Member limit 100000, 100
*************************** 7. row ***************************
Query_ID: 7
Duration: 0.02447700
Query: select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100[/codes]
从结果中可以得知,当偏移1000以上使用子查询法可以有效的提高性能。
2.倒排表优化法
倒排表法类似建立索引,用一张表来维护页数,然后通过高效的连接得到数据
缺点:只适合数据数固定的情况,数据不能删除,维护页表困难
具体请看,http://blog.chinaunix.net/u/29134/showart_1333566.html
3.反向查找优化法
当偏移超过一半记录数的时候,先用排序,这样偏移就反转了
缺点:order by优化比较麻烦,要增加索引,索引影响数据的修改效率,并且要知道总记录数 ,偏移大于数据的一半
[codes=sql]limit偏移算法:
正向查找: (当前页 - 1) * 页长度
反向查找: 总记录 - 当前页 * 页长度[/codes]
做下实验,看看性能如何
总记录数:1,628,775
每页记录数: 40
总页数:1,628,775 / 40 = 40720
中间页数:40720 / 2 = 20360
第21000页
正向查找SQL:
[codes=sql]SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 839960, 40 [/codes]
时间:1.8696 秒
反向查找sql:
[codes=sql]SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 788775, 40 [/codes]
时间:1.8336 秒
第30000页
正向查找SQL:
[codes=sql]SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 1199960, 40 [/codes]
时间:2.6493 秒
反向查找sql:
[codes=sql]SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 428775, 40 [/codes]
时间:1.0035 秒
注意,反向查找的结果是是降序desc的,并且InputDate是记录的插入时间,也可以用主键联合索引,但是不方便。
4.limit限制优化法
把limit偏移量限制低于某个数。。超过这个数等于没数据,我记得alibaba的dba说过他们是这样做的
5.只查索引法
http://willko.iteye.com/blog/670120
总结:limit的优化限制都比较多,所以实际情况用或者不用只能具体情况具体分析了。页数那么后,基本很少人看的。。。
一般刚开始学SQL的时候,会这样写
[codes=sql]SELECT * FROM table ORDER BY id LIMIT 1000, 10;[/codes]
但在数据达到百万级的时候,这样写会慢死
[codes=sql]SELECT * FROM table ORDER BY id LIMIT 1000000, 10;[/codes]
也许耗费几十秒
网上很多优化的方法是这样的
[codes=sql]SELECT * FROM table WHERE id >= (SELECT id FROM table LIMIT 1000000, 1) LIMIT 10;[/codes]
是的,速度提升到0.x秒了,看样子还行了
可是,还不是完美的!
以下这句才是完美的!
[codes=sql]SELECT * FROM table WHERE id BETWEEN 1000000 AND 1000010;[/codes]
比上面那句,还要再快5至10倍
另外,如果需要查询 id 不是连续的一段,最佳的方法就是先找出 id ,然后用 in 查询
[codes=sql]SELECT * FROM table WHERE id IN(10000, 100000, 1000000...);[/codes]
1.子查询优化法
先找出第一条数据,然后大于等于这条数据的id就是要获取的数据
缺点:数据必须是连续的,可以说不能有where条件,where条件会筛选数据,导致数据失去连续性
[codes=sql]mysql> set profiling=1;
Query OK, 0 rows affected (0.00 sec)
mysql> select count(*) from Member;
+----------+
| count(*) |
+----------+
| 169566 |
+----------+
1 row in set (0.00 sec)
mysql> pager grep !~-
PAGER set to 'grep !~-'
mysql> select * from Member limit 10, 100;
100 rows in set (0.00 sec)
mysql> select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100;
100 rows in set (0.00 sec)
mysql> select * from Member limit 1000, 100;
100 rows in set (0.01 sec)
mysql> select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100;
100 rows in set (0.00 sec)
mysql> select * from Member limit 100000, 100;
100 rows in set (0.10 sec)
mysql> select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100;
100 rows in set (0.02 sec)
mysql> nopager
PAGER set to stdout
mysql> show profiles\G
*************************** 1. row ***************************
Query_ID: 1
Duration: 0.00003300
Query: select count(*) from Member
*************************** 2. row ***************************
Query_ID: 2
Duration: 0.00167000
Query: select * from Member limit 10, 100
*************************** 3. row ***************************
Query_ID: 3
Duration: 0.00112400
Query: select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100
*************************** 4. row ***************************
Query_ID: 4
Duration: 0.00263200
Query: select * from Member limit 1000, 100
*************************** 5. row ***************************
Query_ID: 5
Duration: 0.00134000
Query: select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100
*************************** 6. row ***************************
Query_ID: 6
Duration: 0.09956700
Query: select * from Member limit 100000, 100
*************************** 7. row ***************************
Query_ID: 7
Duration: 0.02447700
Query: select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100[/codes]
从结果中可以得知,当偏移1000以上使用子查询法可以有效的提高性能。
2.倒排表优化法
倒排表法类似建立索引,用一张表来维护页数,然后通过高效的连接得到数据
缺点:只适合数据数固定的情况,数据不能删除,维护页表困难
具体请看,http://blog.chinaunix.net/u/29134/showart_1333566.html
3.反向查找优化法
当偏移超过一半记录数的时候,先用排序,这样偏移就反转了
缺点:order by优化比较麻烦,要增加索引,索引影响数据的修改效率,并且要知道总记录数 ,偏移大于数据的一半
[codes=sql]limit偏移算法:
正向查找: (当前页 - 1) * 页长度
反向查找: 总记录 - 当前页 * 页长度[/codes]
做下实验,看看性能如何
总记录数:1,628,775
每页记录数: 40
总页数:1,628,775 / 40 = 40720
中间页数:40720 / 2 = 20360
第21000页
正向查找SQL:
[codes=sql]SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 839960, 40 [/codes]
时间:1.8696 秒
反向查找sql:
[codes=sql]SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 788775, 40 [/codes]
时间:1.8336 秒
第30000页
正向查找SQL:
[codes=sql]SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 1199960, 40 [/codes]
时间:2.6493 秒
反向查找sql:
[codes=sql]SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 428775, 40 [/codes]
时间:1.0035 秒
注意,反向查找的结果是是降序desc的,并且InputDate是记录的插入时间,也可以用主键联合索引,但是不方便。
4.limit限制优化法
把limit偏移量限制低于某个数。。超过这个数等于没数据,我记得alibaba的dba说过他们是这样做的
5.只查索引法
http://willko.iteye.com/blog/670120
总结:limit的优化限制都比较多,所以实际情况用或者不用只能具体情况具体分析了。页数那么后,基本很少人看的。。。
一般刚开始学SQL的时候,会这样写
[codes=sql]SELECT * FROM table ORDER BY id LIMIT 1000, 10;[/codes]
但在数据达到百万级的时候,这样写会慢死
[codes=sql]SELECT * FROM table ORDER BY id LIMIT 1000000, 10;[/codes]
也许耗费几十秒
网上很多优化的方法是这样的
[codes=sql]SELECT * FROM table WHERE id >= (SELECT id FROM table LIMIT 1000000, 1) LIMIT 10;[/codes]
是的,速度提升到0.x秒了,看样子还行了
可是,还不是完美的!
以下这句才是完美的!
[codes=sql]SELECT * FROM table WHERE id BETWEEN 1000000 AND 1000010;[/codes]
比上面那句,还要再快5至10倍
另外,如果需要查询 id 不是连续的一段,最佳的方法就是先找出 id ,然后用 in 查询
[codes=sql]SELECT * FROM table WHERE id IN(10000, 100000, 1000000...);[/codes]